Quantifying the Impact of Disfluency on Spoken Content Summarization

Maria Teleki, Xiangjue Dong, James Caverlee

Texas A&M University College Station, Texas, USA {mariateleki, xj.dong, caverlee}@tamu.edu

In LREC-COLING 2024

1 Minute Summary

Original

Hello and welcome to our podcast! Let's get right to it. Today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

Repeats with N=3

Hello and welcome to our podcast! Let's get get get right to it. Today we're going to be interviewing a <u>a</u> a very special guest, someone I know you guys have been excited about having on the show.

Interjections with N=3

Hello and welcome to our podcast! Let's get right **uh okay okay** to it. Today we're going to be interviewing a very special **um so I mean** guest, someone I know you guys have been excited about having on the show.

False Starts with N=3

Hello and welcome to our podcast! Let's get right to it. Today we're today we're today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show. **Disfluencies** are a key characteristic of **spoken content**.

- We study 3 types of disfluencies -- repeats, interjections, and false starts -- in terms of the Shriberg disfluency definition.¹
- **Summarization** quality decreases with increased disfluency.
- We use a parsing-based SOTA disfluency annotator² to repair the disfluencies via removal and tagging.
- We find that training on the repaired transcripts (train_R) and testing on the original transcripts (test) yields the best results.

¹Elizabeth Ellen Shriberg. 1994. Preliminaries to a theory of speech disfluencies. Ph.D. thesis.
²Paria Jamshid Lou and Mark Johnson. 2020. Improving disfluency detection by self-training a self-attentive model. In Association for Computational Linguistics, pages 3754–3763.

Quantifying the Impact of Disfluency on Spoken Content Summarization

Maria Teleki, Xiangjue Dong, James Caverlee

Texas A&M University College Station, Texas, USA {mariateleki, xj.dong, caverlee}@tamu.edu

In LREC-COLING 2024

What is a disfluency?

- Disfluencies are a key characteristic of spoken content.
- We study 3 types of disfluencies -- repeats, interjections, and false starts
 -- in terms of the Shriberg disfluency definition.¹

Original

Hello and welcome to our podcast! Let's get right to it. Today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

Repeats with N=3

Hello and welcome to our podcast! Let's get get get get right to it. Today we're going to be interviewing a <u>a</u> <u>a</u> very special guest, someone I know you guys have been excited about having on the show.

Interjections with N=3

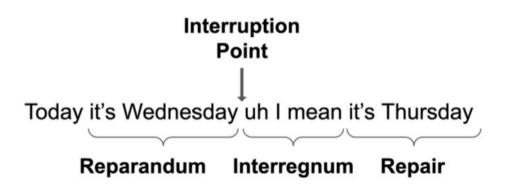
Hello and welcome to our podcast! Let's get right **uh okay okay** to it. Today we're going to be interviewing a very special **um so I mean** guest, someone I know you guys have been excited about having on the show.

False Starts with N=3

Hello and welcome to our podcast! Let's get right to it. Today we're today we're today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

What is a disfluency? The <u>Shriberg</u> disfluency definition.¹

- The reparandum and interregnum are removed to form a fluent sentence.
- Repeats and false starts occur within the reparandum.
- Interjections occur within the interregnum.



¹Elizabeth Ellen Shriberg. 1994. Preliminaries to a theory of speech disfluencies. Ph.D. thesis.

Many important NLP tasks like summarization are often designed for written content rather than the looser, noiser, and more disfluent style of spoken content.^{1,2,3,4}

¹Yang Liu and Mirella Lapata. 2019. Text summarization with pretrained encoders. In Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing, pages 3730–3740.

²Mike Lewis, Yinhan Liu, et al. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Association for Computational Linguistics, pages 7871–7880.

³Ani Nenkova and Kathleen McKeown. 2012. A survey of text summarization techniques. Mining text data, pages 43–76.

⁴Ramesh Nallapati, Bowen Zhou, et al. 2016. Abstractive text summarization using sequence-to-sequence RNNs and beyond. In Conference on Computational Natural Language Learning, pages 280–290.

Research Questions

RQ1: How Do Disfluencies Impact Summarization Quality?

We synthetically inject disfluency events (repeats, interjections, false starts, and their combinations) at a range of severity levels and measure their impact on summarization quality.

RQ2: Can Summarization Quality be Improved By Directly Modeling Disfluency?

We explore the use of a state-of-the-art disfluency detection model to improve the summarization quality by either (1) removing the disfluencies, or (2) tagging the disfluencies.

The Spotify Podcasts Dataset¹

- This dataset was originally used for the summarization task from the TREC 2020 Podcasts Track.²
- We use the test set for the summarization task, which consists of 1,027 podcasts. For each, we have:
 - The podcast transcript
 - The Show ID
 - The Episode ID
 - The creator-provided show description
 - The creator-provided episode description²
- We keep podcasts which have text occurring in their transcript in the first 60 seconds, which leaves us with 1,020 podcasts.

¹Clifton, Ann and Reddy, Sravana et al. 2020. 100,000 podcasts: A spoken English document corpus. ²Rosie Jones, Ben Carterette, Ann Clifton, et al. 2020. TREC 2020 Podcasts Track Overview. In Text Retrieval Conference.

We inject disfluencies according to fixed distributions, similar to previous work:^{1,2}

Repeats and Interjections

We sample from X~N (μ =10, σ =1) to determine the position at which the term(s) should be injected into the transcript N times.

• The interjections are uniformly randomly selected from: *uh, um, well, like, so, okay, I mean, you know.*

False Starts

Sentences >4 words are non-uniformly sampled with 80/20 probability with replacement, and the selected sentences have a false start (first 2 words of sentence) interjected N times.

Original

Hello and welcome to our podcast! Let's get right to it. Today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

Repeats with N=3

Hello and welcome to our podcast! Let's get get get get right to it. Today we're going to be interviewing a <u>a</u> <u>a</u> very special guest, someone I know you guys have been excited about having on the show.

Interjections with N=3

Hello and welcome to our podcast! Let's get right **uh okay okay** to it. Today we're going to be interviewing a very special **um so I mean** guest, someone I know you guys have been excited about having on the show.

False Starts with N=3

Hello and welcome to our podcast! Let's get right to it. Today we're today we're today we're going to be interviewing a very special guest, someone I know you guys have been excited about having on the show.

¹Shaolei Wang, Wangxiang Che, et al. 2020. Multi-task self-supervised learning for disfluency detection. In AAAI Conference on Artificial Intelligence, volume 34, pages 9193–9200. ²Tatiana Passali, Thanassis Mavropoulos, et al. 2022. LARD: Large-scale artificial disfluency generation. In Language Resources and Evaluation Conference, pages 2327–2336.

We consider 6 summarization models:

1min is the first minute of transcript **T5** is a text text.¹

cued_speechUniv2 is an ensemble of 3 BART models plus a hierarchical filtering model, and it is the top performer from the TREC 2020 Podcasts Track.²

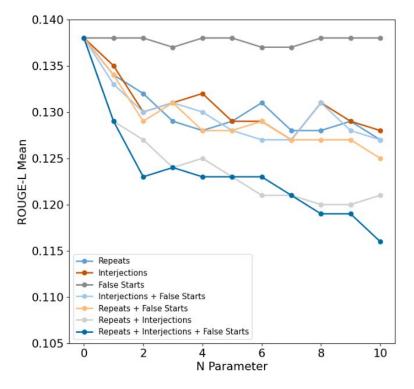
BART is a sequence-to-sequence model with a bidirectional encoder and a left-to-right autoregressive decoder.

Llama 2-Chat is a large transformer model which is pretrained and specifically for chat settings using RLHF.

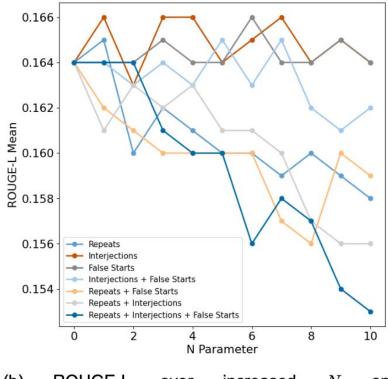
¹Rosie Jones, Ben Carterette, Ann Clifton, et al. 2020. TREC 2020 Podcasts Track Overview. In Text Retrieval Conference. ²Potsawee Manakul and Mark Gales. 2020. Cued_speech at TREC 2020 podcast summarisation track. In Text Retrieval Conference.

T5 is a text-to-text transformer model.

Pegasus is a transformer model with a pretraining objective called gap sentence generation.



(a) ROUGE-L over increased N on **BART** model.



(b) ROUGE-L over increased N on **cued_speechUniv2** model.

Model	N=0	N=2 vs. N=0	R]	F	I+F	R+F	R+I	R+I+F
1min	0.124	$N_2 - N_0 \ \Delta$	-0.013 (-10.3%)	-0.014 (-11.6%)	-0.004 (-3.2%)	-0.017 (-14.0%)	-0.016 (-13.0%)	-0.026 (-21.0%)	-0.029 (-23.7%)
BART	0.138	$N_2 - N_0 \ \Delta$	-0.006 (-4.6%)	-0.008 (-5.5%)	0.000 (-0.3%)	-0.008 (-5.7%)	-0.008 (-6.1%)	-0.011 (-7.6%)	-0.015 (-11.1%)
Т5	0.134	$N_2-N_0\ \Delta$	-0.018 (-13.7%)	-0.010 (-7.4%)	-0.003 (-2.4%)	-0.013 (-9.9%)	-0.018 (-13.7%)	-0.025 (-19.0%)	-0.032 (-23.7%)
Pegasus	0.131	$N_2-N_0\ \Delta$	-0.011 (-8.8%)	-0.014 (-10.4%)	-0.003 (-2.6%)	-0.017 (-12.9%)	-0.014 (-10.7%)	-0.023 (-17.2%)	-0.026 (-19.9%)
cued_speechUniv2	0.164	$N_2-N_0\ \Delta$	-0.004 (-2.5%)	-0.001 (-0.8%)	-0.001 (-0.5%)	-0.001 (-0.8%)	-0.003 (-1.9%)	-0.002 (-1.0%)	-0.001 (-0.5%)
Llama 2-Chat	0.129	$N_2 - N_0 \ \Delta$	-0.001 (-0.6%)	-0.002 (-1.2%)	-0.001 (-1.0%)	-0.002 (-1.6%)	-0.001 (-1.1%)	-0.001 (-1.1%)	-0.002 (-1.5%)

- **Overall drop in ROUGE-L** with increased N.
- T5 and Pegasus are the least resilient in the presence of disfluencies, BART is moderately resilient, and cued_speechUniv2 and Llama 2-chat are the most resilient.

RQ2: Can Summarization Quality be Improved By Directly Modeling Disfluency?

We use a state-of-the-art, parsing-based disfluency annotation model¹ (Equations 1 and 2) to transform the transcripts via:

- **Repairing**: Removal of words marked disfluent.
- **Tagging**: Tagging (<DIS> and <\DIS>) of words marked disfluent.

$$s(T) = \sum_{(i,j,l)\in T} s(i,j,l)$$
 (1)

$$\hat{T} = \underset{T}{\operatorname{argmax}} s(T)$$
 (2)

RQ2: Can Summarization Quality be Improved By Directly Modeling Disfluency?

- Simply using the test set as-is yields the best ROUGE scores in most cases.
 - However, Pegasus is more robust in the face of missing information, and benefits from having the disfluencies removed.

Inference-Only

Model	Test	Rouge-L	Rouge-1	Rouge-2
	$test_R$	0.137	0.211	0.053
BART	test	0.138	0.212	0.054
	$test_T$	0.137	0.209	0.052
	test _R	0.131	0.200	0.047
Pegasus	test	0.131	0.198	0.049
	$test_T$	0.113	0.169	0.038
Т5	test _R	0.133	0.194	0.050
	test	0.134	0.199	0.051
	$test_T$	0.126	0.181	0.048

RQ2: Can Summarization Quality be Improved By Directly Modeling Disfluency?

train	test	BART			Т5			Pegasus		
		R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2
	$test_R$	0.172	0.240	0.085	0.145	0.197	0.059	0.129	0.174	0.049
train _R	test	0.177	0.244	0.090	0.146	0.196	0.060	0.131	0.177	0.052
	$test_T$	0.174	0.241	0.086	0.148	0.198	0.063	0.096	0.133	0.037
	$test_R$	0.170	0.236	0.083	0.146	0.198	0.060	0.122	0.165	0.045
train	test	0.175	0.242	0.088	0.149	0.200	0.062	0.126	0.169	0.049
	$test_T$	0.172	0.238	0.085	0.147	0.194	0.065	0.090	0.124	0.032
$train_T$	$test_R$ test test_T	0.172 0.173 0.169	0.238 0.240 0.235	0.083 0.085 0.081	0.142 0.143 0.145	0.193 0.194 0.196	0.057 0.057 0.058	0.129 0.127 0.115	0.193 0.193 0.146	0.048 0.047 0.038

We find that training on the repaired transcripts (train_R) and testing on the original transcripts (test) yields the best results.

Link to our code on GitHub!

Conclusion

- **Disfluencies** are a key characteristic of **spoken content**.
 - We study 3 types of disfluencies -- *repeats, interjections, and false starts* -- in terms of the Shriberg disfluency definition.¹
- We synthetically inject disfluencies (N) and find that summarization quality decreases with increased disfluency.
 - Decreases the most with combinations of the 3 disfluency types.
- We use a **parsing-based SOTA disfluency annotator**² to repair the disfluencies via removal and tagging.
- We find that for inference: Simply using the test set as-is yields the best ROUGE scores in most cases.
 - Pegasus is more robust in the face of missing information, and benefits from having the disfluencies removed.
- We find that for fine-tuning + inference: Training on the repaired transcripts (train_R) and testing on the original transcripts (test) yields the best results.

¹Elizabeth Ellen Shriberg. 1994. Preliminaries to a theory of speech disfluencies. Ph.D. thesis.

²Paria Jamshid Lou and Mark Johnson. 2020. Improving disfluency detection by self-training a self-attentive model. In Association for Computational Linguistics, pages 3754–3763.

Quantifying the Impact of Disfluency on Spoken Content Summarization

Maria Teleki, Xiangjue Dong, James Caverlee

Texas A&M University College Station, Texas, USA {mariateleki, xj.dong, caverlee}@tamu.edu

In LREC-COLING 2024

